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SYNOPSIS 

It is shown how a characterization of unfilled, amorphous rubber networks can be evaluated 
from uniaxial stress-strain measurement data. Beside the cross-linking density, the relative 
scission probability during the curing procedure is evaluated, which determines the amount 
of dangling free chain ends and the number of trapped entanglements. These values are 
found from the C2 term of the Mooney-Rivlin equation by using the predictions of a tube 
model. A necessary requirement for applying stress-strain measurements at large extensions 
is the consideration of the finite extensibility component of the reduced stress. It is taken 
into account by using a numerical procedure, which derives from a series expansion of the 
inverse Langevin approximation. The experimental results found at natural rubber networks 
cross-linked with thiuram (TMTD) and peroxid (DCP) show that network defects cannot 
be neglected in the DCP networks. They are assumed to be connected to the worse tensil 
strength properties compared to the TMTD networks. 0 1993 John Wiley & Sons, Inc. 

1. INTRODUCTION 

The physics of rubber elasticity is characterized by 
a great variety of approaches, models, and concepts. 
This has been reviewed in a considerable number of 
papers.'-7 The first remarkable molecular interpre- 
tation of rubber elasticity was introduced by Kuhn, 
Guth, and They developed the statistical 
mechanics of polymer chains by describing the con- 
figuration and conformation of the monomeric units 
in a random flight model of statistical segments. This 
is the basic assumption of the so-called Gaussian 
chain model, where the end-to-end distance of the 
chains results in a Gaussian distribution function. 
The elastic forces are calculated from the confor- 
mational entropy loss of the network chains, when 
the mean end-to-end distance deviates from its most 
probable value. 

Based on this general concept, different ap- 
proaches to the description of the real stress-strain 
behavior of amorphous polymer networks have been 
developed. Essentially, additional assumptions con- 
cerning the influence of the surrounding chains on 
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the entropy of a single network chain were made. 
Flory and Erman '&13 and, independently, Kiistner lP1' 

developed a concept of restricted junction fluctua- 
tions, while the network chains themselves were 
handled as phantom chains, which do not feel any 
constraints. By assuming the free fluctuation space 
of the cross-linking junctions to be transformed 
nonaffinely under deformation, this model predicts 
nonaffine transformation properties on small length 
scales. This result is confirmed by NMR measure- 
ments of Gronski et a1.l' The deformation depen- 
dency of the reduced stress, as characterized by the 
phenomenological Mooney-Rivlin equation, is ex- 
plained by a constraint release effect. In the infinite- 
strain limit, the restrictions on junction fluctuations 
disappear asymptotically and a pure phantom net- 
work results. 

A more realistic approach to the consideration of 
topological constraints in real polymer networks are 
the tube models or related models like the slip-link 
model (compare Fig. 1). The most fundamental 
conception in this area was developed by Heinrich 
et al., 19-23 who calculated the constraining tube di- 
ameter and its deformation dependency for a single- 
chain self-consistently from the free energy of the 
surrounding chains. This model works without any 

113'7 
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Figure 1 Schematic representation of a network chain in a tube. The tube diameter is 
given by the mean spacing of the topological constraint centers, i.e., cross-links and en- 
tanglements, indicated as crosses. 

fitting parameters and explains the stress-strain 
data of uniaxial as well as biaxial extension in terms 
of molecular quantities. For highly cross-linked net- 
works, their model leads to the semiempirical rela- 
tion of T ~ c h o e g l , ~ ~  which was found by comparing 
stress-relaxation experiments of cross-linked and 
uncross-linked materials. In the infinite-strain limit, 
the influence of the surrounding chains on the re- 
tracting force of a single chain releases asymptoti- 
cally. This prediction compares to the one that is 
found in the model of restricted junction fluctua- 
tions. However, the tube model does not necessarily 
predict a free fluctuating phantom network in the 
infinite-strain limit. This is an essential difference 
between the two models. 

So far, all problems concerning the elasticity of 
amorphous polymer networks seem to be solved. 
However, measurements of the microscopic prop- 
erties by NMR spectroscopy are not in full agree- 
ment with the theoretical predictions. Especially, 
the calculated chemical cross-linking densities as 
found from the C ,  term of the Mooney-Rivlin equa- 
tion in some cases clearly differ from those found 
from NMR  measurement^.^^ A possible explanation 
of this discrepancy is a wrong interpretation of the 
infinite-strain modulus, i.e., the C ,  term of the Moo- 
ney-Rivlin equation. It is generally believed that this 
modulus reflects the pure chemical cross-links, but 
this attempt of explanation contradicts the as- 
sumption that permanently trapped entanglements 
exist in polymer networks that behave somehow like 
chemical junctions. A detailed model for the behav- 

ior of trapped entanglements is presented in Ref. 7 
or Ref. 26, but, in agreement with the usual inter- 
pretation, this model predicts a disappearing influ- 
ence of the trapped entanglements on the infinite- 
strain modulus. A contribution to the equilibrium 
modulus is supposed only for small deformation. 

This result is not easy to understand because 
trapped entanglements are not temporary and, thus, 
should contribute to every equilibrium modulus. 
Even in the case of minimal action, where all trapped 
entanglements slide onto a chemical netpoint, a 
nonzero efficiency of the trapped entanglements is 
expected, which results from the rise of the func- 
tionality of these netpoints. Instead, the experi- 
mental results seem to indicate that this picture does 
not work, because the infinite-strain modulus seems 
to change in direct proportionality with the amount 
of cross-linking agent. However, we will show below 
that this is not the case if non-Gaussian chain sta- 
tistics are applied. We will find clear evidence for 
an influence of the trapped entanglements on the 
infinite-strain modulus, which means that the cal- 
culated chemical cross-linking densities are gener- 
ally smaller than in the Gaussian case. 

2. NON-GAUSSIAN CHAIN STATISTICS 
A N D  THE TUBE MODEL 

Instead of the Gaussian distribution function for the 
end-to-end distance of a network chain, we assume 
the more realistic inverse Langevin approximation, 
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Figure 2 Schematic representation of a nonideal net- 
work: (a, b) dangling free chain ends; (b)  with temporary 
entanglements; (c ) trapped entanglements; (d, e )  elasti- 
cally effective and ineffective close loops, respectively. 

introduced by Kuhn and G~-iin.'~ This approach 
takes into account the finite extensibility of the 
chains by considering the orientation of the statis- 
tical segments in the direction of strain. Thus, it 
can be applied up to large extensions, where the end- 
to-end distance approaches the fully extended length 
of the network chains. A very useful series expansion 
for the inverse Langevin function was used by Kuhn 
and Kuhn." For uniaxial deformations, it leads to 
the following series expansion of the reduced stress 
(see, e.g., Ref. 1 ) : 
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( 2 )  

X is the deformation ratio and o is the stress related 
to the cross section of the undeformed sample; n is 
the average number of statistical segments of the 
network strands. For X = 6, the full series expan- 
sion (1) approaches infinity. Thus, the square root 
of n defines the maximum deformation ratio of the 
network chains. In the limit n + 00, a Gaussian 
statistic results, i.e., the modulus G (  A )  is the Gauss- 
ian contribution to the reduced stress. This Gaussian 
modulus is, in general, unknown, as long as n is un- 
known. However, in the framework of the above- 
described molecular models on rubber elasticity, n 
can be determined as a function of G (  A ) .  By in- 
serting this function into ( 1 ), n can be calculated 
and the finite extensibility component can be sep- 
arated from the Gaussian contribution of the re- 
duced stress. We will demonstrate how this works 
for the tube model. 

2.1. A Numerical Procedure for Separating 
the Finite Extensibility Component 
of the Reduced Stress 

Following the conception of the topological con- 
straints in dry rubber networks as formulated in the 
tube model, we assume a two-network model with 
an elastic contribution G1 and a topological con- 
straint part G2 - c$( A )  that approaches zero in the 
infinite-strain limit X + co: 

for X 2 l;O c @ s  1 * (3) 

with 

( 4 )  

,8 is a tube relaxation parameter, which is taken to 
be one in dry rubber networks, while in highly swol- 
len networks, it equals zero. By applying elementary 
network theory, we assume 

G (  A )  = Av( X)RT (5) 

R is the gas law constant; T ,  the absolute temper- 
ature; and A ,  a structure factor that depends on the 

* For X 2 1, the function q5( A )  is well approximated by X-', 
which corresponds to the semiempirical Mooney-Rivlin equation. 
However, this is not correct for X < 1. In this case, only $( X) 
gives a good fit to experimental results. 
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amount of fluctuations of the cross-links. In a first 
approximation, we assume a structure factor of free 
fluctuating cross-links: A = 1 - 2 / f ,  where f is the 
functionality of the cross-links. v ( A )  is a formal 
strand density that is constructed from the elastic 
as well as the constraining contributiont: 

The strain-dependent strand density up$( A )  
corresponds to a pseudonetwork that describes the 
influence of the constraining tubes on the modulus. 
In this sense, it also reflects the influence of the 
constraining tubes on the degree of orientation of 
the statistical chain segments. This orientation is 
taken into consideration in the inverse Langevin 
approximation ( 1 ) by the strain A and by the mean 
number of statistical segments n, which becomes 
strain-dependent in this model if it is coupled to the 
elastically effective strand density Y( A ) .  This means 
that the quantity n( A )  is only a formal mean number 
of statistical segments, which is derived by consid- 
ering all elastically effective strands: the real ones 
as well as those of the constraining pseudonetwork. 
Thus, the calculation of the finite extensibility com- 
ponent according to ( 1 ) is done in a two-chain and 
not, as usually, in a single-chain approach. The con- 
straining tubes are assumed to give rise to an in- 
creased orientation of the chain segments. From ( 5 )  
and ( 6 ) ,  we then find 

ip is the mass density of the elastically effective net- 
work, which is taken to equal the mass density of 
the polymer pp in a first approximation, where net- 
work defects are neglected. M,  = M ,  - C ,  is the mo- 
lar mass of a statistical segment, i.e., the monomer 

This mean-field picture with a strain-dependent elastically 
effective strand density is mathematically equivalent to a tube 
model with strain-dependent tube diameters, where the compo- 
nents in direction of the principal axis of the deformation tensor 
change as 

d; = i = I , Z ,  3 ( 7 )  

do is the diameter of the tube in the undeformed state and di is 
the diameter in direction i of the principal axis system in the 
deformed state. This model was derived self-consistently by 
Heinrich et  al.6~19*20 for moderately but almost completely cross- 
linked networks, where the degree of coil interpenetration is high 
and the constraining tubes are governed by a large number of 
chains. 

molar mass M ,  multiplied by the characteristic ratio 
C, of the polymer.* 

By combining eqs. ( 1 ) and (8), we find 

If the series expansion (1) is taken up to fourth 
order in n, this is an equation of fifth order in n, 
which can be solved explicitly by elementary nu- 
merical calculations for every stress-strain mea- 
surement point. As a result, the finite extensibility 
component can be separated from the reduced stress 
and the Gaussian contribution to the reduced stress 
G( A )  as well as GI and G2 can be calculated in a first 
approximation. 

In view of obtaining more exact values for the 
finite extensibility component of the reduced stress, 
two of the above assumptions have to be modified. 
On the one hand, the value of the structure factor 
A ,  which was taken within the framework of free 
fluctuating cross-links, has to be calculated more 
exactly. On the other hand, the mass density of the 
polymer used in eq. (8) has to be replaced by the 
mass density of the elastically effective network, i.e., 
the dangling chain ends have to be substracted. This 
is done later, by using Langley's trapping factor. 
Here, we first focus on the structure factor A ,  which 
is now coupled to the real amount of fluctuations of 
the cross-links. 

2.2. Calculation of the Structure Factor 

As already remarked above, the tube model does not 
necessarily predict a free fluctuating phantom net- 
work in the infinite-strain limit. This is only found 
for highly swollen networks, where the constraint 
modulus vanishes totally. In dry rubber networks, 
the restrictions on junction fluctuations resulting 
from the surrounding chains do not disappear 
asymptotically in the infinite-strain limit. The tube 
model explains the asymptotic release of the con- 
straint modulus by a special deformation behavior 
of the tubes and not by a release of the constraints 
on the junctions, as assumed in the theory of re- 
stricted junction fluctuations. A calculation of the 
structure factor within the framework of the tube 
model was made by Kastner." It takes into account 
that the constraints acting on a cross-link are gen- 

* The definition of C ,  used here differs from the one found 
in the polymer handbook and other l i t e r a t ~ r e . ~ - ~ l  Here, C ,  is 
related to the length of a monomer unit and not to the average 
bond length of the chain backbone. 
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erally stronger than those acting on chain segments 
distant from the cross-links: 

where 
7 

ro is the tube radius in the undeformed state and Ro 
is the mean end-to-end distance of the elastically 
effective strands. Thus, A depends not alone on the 
functionality f of the cross-links, but it is influenced 
as well by the ratio between ro and Ro. This can also 
be expressed by the ratio between Gl and G2, because 
“Kuhn’s square root law,” respectively, the tube 
model, implies6 

p 2;p i 2  RT 
G2 = 

4 f i M s r  

v1 is the density of elastically effective strands; ro, 
the tube radius, which determines the mean fluc- 
tuation space of the chain segments; and 1 ,  the 
Kuhn’s step length of a statistical segment. The pa- 
rameter K can now be rewritten as 

By taking the experimental values of G1 and Gz 
from the first approximation and repeating the 
above-described numerical procedure for calculating 
the finite extensibility component of the reduced 
stress with the improved values of A , a second ap- 
proximation for G1,  G 2 ,  and A can be found itera- 
tively. In view of obtaining a third approximation, 
we will now take into account the elastically inef- 
fective network strands, i.e., the dangling chain ends 
that are connected very close to the trapping of in- 
terchain entanglements. The elastically ineffective 
closed loops are not regarded at  this stage (compare 
Fig. 2 ) .  

2.3. Network Defects and Trapped 
Entanglements 

Most of the polymer networks used in practice con- 
tain a more or less considerable amount of network 

defects. These result mainly from chain-scission ef- 
fects during the cross-linking procedure or in the 
case of end-group cross-linking from incomplete 
cross-linking reactions. Both of these effects are 
connected very close to the fraction T, of interchain 
entanglements that are trapped during the cross- 
linking procedure. Thus, they are conveniently de- 
scribed with the help of Langley’s trapping factor 
T,, which can be used for counting the elastically 
effective strands of a n e t ~ o r k . ~ ’ - ~ ~  Two different 
methods of counting effective strands are found in 
the l i t e r a t ~ r e . ~ * - ~ ~  We will apply them by restricting 
ourselves to the case f = 4 of tetrafunctional cross- 
links. 

One obvious method of counting effective strands 
was given by S ~ a n l a n d . ~ ~  His method counts two 
effective strands per cross-link that is connected to 
the gel by all four paths, plus 1.5 effective strands 
per cross-link that is connected by three paths. It 
results in the following relation between the mass 
density of the elastically effective network iP and 
the mass density of the whole network p p :  

w, is the gel fraction of the network, which has a 
value very close to one in highly extendable net- 
works. It equals the probability that a randomly 
chosen segment of the network is connected to the 
gel by at  least one path. 6 is the probability that 
a randomly chosen segment is connected to the gel 
by both paths. 

A second method of counting effective strands 
was introduced by F l ~ r y . ~ ~  He counted two effective 
strands per cross-link that is connected to the gel 
by all four paths, but only one effective strand per 
cross-link that is connected by three paths. This 
method is related to the cycle rank concept of Flory 
and frequently used for calculating the relation be- 
tween the elastically effective strand density v, due 
to the cross-links and the corresponding cross-link- 
ing density p,: 

v, = 2 v E w g p c  (16)  

The effect of network defects on the structure 
factor A ,  which results from a reduction of the func- 
tionality of some cross-links, is exactly canceled by 
using Flory’s method of counting effective strands. 
This means that the maximum value of the func- 
tionality f = 4 can be used in calculations, if Flory’s 
method, i.e., eq. ( 16) ,  is applied. An alternative pos- 
sibility is the use of Scanland’s method of counting 
effective strands,35 but, then, a mean functionality 
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has to be used upon calculation of A .  Instead of eq. 
(16) ,  we then find 

In both cases, the elastically effective strand density 
v, is coupled to a corresponding infinite-strain mod- 
ulus G, via the structure factor A ,  which has to be 
calculated by using the maximum value or a mean 
value of the functionality, respectively: 

length of the chain segments, which is called the 
tube diameter. In view of finding the trapping factor, 
this quantity is coupled to the mean spacing of the 
topological constraint centers, which are built by 
the chemical cross-links as well as by the entangle- 
ments. For simplification, we will first demonstrate 
how this is done in the melt case, where chemical 
cross-links and chain-scission effects are absent. The 
plateau modulus G& of the melt then reads 

Gc = Av,RT (17) 
and 

In general, the modulus G, is identified by the C1 
term of the Mooney-Rivlin equation, but here we 
assume, as already discussed above, that an addi- 
tional influence of trapped entanglements governs 
the infinite-strain modulus GI:  

This assumption is confirmed in the experimental 
part of this paper (compare Fig. 6 ) .  The modulus 
G, due to entanglements has the same structure ( 17) 
as does G,; however, the structure factor A is not 
the same because the fluctuation range of entangle- 
ments differs from that of cross-links. Therefore, an 
experimental determination of the trapping factor 
T, from the structure of the elastic modulus GI as 
given by eq. (18) is not possible as long as the struc- 
ture factor of the modulus G, remains unknown. 

The significance of T, for a characterization of 
networks covered with defects becomes obvious in 
view of eqs. ( 15), ( 16) ,  and ( 16') : An experimental 
determination of cross-linking densities as well as 
dangling chain ends from stress-strain measurement 
data requires knowledge of the trapping factor. The 
classical experimental procedure to find it consists 
of a measurement of the molecular weight before 
cross-linking and the extractable sol fraction in the 
network, from which the value of the trapping factor 
can be c a l ~ u l a t e d . ~ ~ , ~ ~  However, a determination of 
the sol fraction in highly defective networks is com- 
plicated by the fact that the sol particles are difficult 
to extract, because they can be branched. In the fol- 
lowing part of this paper, we will introduce an al- 
ternative procedure, which determines the trapping 
factor from the structure of the constraint modulus. 

2.4. Determination of the Trapping Factor 

The constraint modulus G2 as calculated from the 
tube model ( 13) depends on the mean fluctuation 

pe is the density of entanglements in the melt and 
[ is a proportionality constant between the tube ra- 
dius in the melt rFlt and the mean spacing of en- 
tanglements along a single chain: 

N ,  is the mean number of statistical segments be- 
tween entanglements. In some applications, [ is 
taken to be one6; however, we will see below that 
this is not consistent in our model and [ has a value 
around two. 

In the next step, we will now generalize these 
considerations to the case of networks covered with 
defects. We assume that the defects are caused by 
main-chain scission, which also frees entanglements. 
Even at relatively low scission levels, many entan- 
glements are not trapped because they are freed by 
producing a free chain end from one of the four 
strands. The portion of entanglements that are freed 
and not trapped cannot contribute to the moduli GI 
and G2 if the characteristic deformation time in 
stress-strain measurements is smaller than the re- 
laxation time determined by the size of the free ends. 
This means that at relatively high cross-linking 
densities, where the trapping factor has reached a 
limiting value T,,,,, and no more trapping takes 
place, the density of topological constraint centers 
p,, is given by (compare Fig. 1 ) 

This expression is built in analogy to eq. (20) ,  where 
the tube radius ro in the network, as given by the 
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constraint modulus G2, is used. The dependency on 
the mass density & of the elastically effective net- 
work and not on the mass density pp of the whole 
network reflects the fact that entanglements of the 
dangling free chain ends give no contribution to the 
constraint modulus. The parameter 4 is assumed to 
be independent of cross-linking density. In the net- 
work case, it determines the ratio between the mean 
spacing of the constraint centers along a single chain 
and the tube radius: 

N,, is the mean number of statistical segments be- 
tween the constraining centers. By using eq. (22)  
and combining it with eqs. (13 ) ,  (16 ) ,  (17) ,  and 
( 19) ,  we can now find a relation between the moduli 
G,, G2, and G;: 

As the limiting value of the trapping factor is in- 
dependent of cross-linking densities, this relation 
allows the determination of T,,,,, from the axis in- 
tersection of a plot of G, against G2. For the structure 
factor A ,  which slightly depends on cross-linking 
densities, a mean value has to be used. The gel frac- 
tion wg can taken to be equal to one, because in 
highly extendable networks, it always has a value 
very close to one. 

The limiting value of the trapping factor T,,,,, 
depends on the scission level only and not on the 
initial molecular weight distribution. This is because 
there are many more scission-produced chain ends 
than original ends if scission occurs. By assuming 
the relative scission probability p / q  to be constant, 
we find33 

1/2 4 

T,,,,, = [ 3 - ( 1  + 4 f )  ] (24)  16 

p is the probability that a randomly chosen chain 
segment suffers scission and q is the corresponding 
probability that it is cross-linked during the curing 
process. 

3. RESULTS 

Natural rubber samples (SMR CV 50) were cured 
with two different cross-linking systems at  155°C 

up to 90% of the maximal torque found in vulca- 
meter measurements. In one case, peroxid (DCP) 
was employed, and in the other case, thiuram 
(TMTD) together with the same amount of ZnO 
was used. The amount of cross-linking agent was 
varied systematically. Stress-strain measurements 
were executed at the cured samples in uniaxial ex- 
tension (Universalpriifmaschine Zwick 1445). To 
avoid stress-induced crystallization, the measure- 
ments were performed in a temper box at 100°C. 
The deformation velocity was chosen to be small 
(10 mm/min) in order to evade dynamical contri- 
butions to the modulus. 

Figure 3 shows a typical example of measured 
reduced stress curves plotted against the inverse de- 
formation ratio. In addition, the numerically cal- 
culated Gaussian contribution G( A )  of the reduced 
stress according to eq. ( 1 ) combined with eqs. ( 8 ) ,  
( lo ) ,  and ( 15) is shown. Every point of the Gaussian 
contribution was calculated iteratively by solving eq. 
( 9 )  up to fifth order in n. It is important to note 
that this order of the equation should not be reduced, 
because the series expansion ( 1 )  converges very 
slowly for large values of A or small n. The char- 
acteristic ratio was taken to be C, = 1.9 i.e., the mol 
mass of the statistical segments results as M,  
= M,,, * C, = 129 g/mol. This number represents the 
mean of several values given by different refer- 
e n c e ~ . ~ , ~ ~ ~ ~ ~  The mass density of the samples was 
measured as pp = 900 k 5 kg/m3 and the function- 
ality of the cross-links was taken to be f = 4. The 
trapping factor T, was taken from the plot in Fig- 
ure 8. 

The regression line inserted in Figure 3 deter- 
mines the moduli GI and G2. It is seen that the 
Gaussian modulus G( A ) ,  as calculated according to 
eq. ( 1 ) , fulfills eq. ( 3 )  even up to large extensions 
where the “upturn” of the reduced stress appears. 
The observed deviations from the postulated be- 
havior ( 3 ) at very large extensions can be explained 
by a bursting of single short chains, which result 
from inhomogeneities in the network. The devia- 
tions at small extensions are possibly due to energy- 
elastical contributions to the modulus, resulting 
from intermolecular interactions in the domain of 
the cross-linking points. However, these deviations 
can as well be attributed to experimental difficulties 
to make an unambiguous definition of the unstrained 
length & of the sample, which is associated with the 
lack of perfect reversibility of the rubber. Any small 
error in & has an exaggerated effect on the measured 
zero-strain limit. This means that the experimental 
method of uniaxial extension is not appropriate for 
the determination of the reduced stress in the zero- 
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Figure 3 Typical example of a Mooney-Rivlin plot for the reduced stress. For every 
measurement point, in addition, the numerically calculated Gaussian contribution is shown. 

strain limit if the zero of strain cannot be associated 
quite exactly with the zero of stress. 

Figures 4 and 5 show the reduced stress and the 
calculated Gaussian contribution for four different 
degrees of cross-linking with TMTD and DCP, re- 
spectively. The influence of the strain and the degree 
of cross-linking on the orientation of the chains, as 
stated by eq. ( 1 ) , becomes obvious: The degree of 
cross-linking or, equally well, the number of statis- 
tical segments between cross-linking points n de- 
termines the “position of the upturn” according to 
the equation A,,, = G, where (1) approaches in- 
finity. In addition, n determines the amount of de- 
viation between the reduced stress and the Gaussian 
contribution. This finite extensibility component of 
the reduced stress increases with rising degree of 
cross-linking. It results in a systematic decrease of 
the infinite-strain limit Gl compared to the predic- 
tions of the Mooney-Rivlin procedure that assumes 
a purely Gaussian network model. This was already 
pointed out by Mullins and M ~ r r i s . ~ ~ , ~ ~  The con- 
straining part G2, i.e., the slope of the regression 
lines in Figures 4 and 5 ,  is generally more distinct 
than in the Gaussian theory, where the finite exten- 
sibility of the polymer chains is not taken into ac- 
count. 

Figures 6 and 7 show the infinite-strain limits G1 
of the TMTD and DCP networks as a function of 
curing-agent concentration. It becomes obvious that 
GI is influenced by chemical cross-linkings as well 

as by trapped entanglements. The experimental 
results confirm the assumed decomposition (18) 

The trapping factor T, increases with rising 
TMTD or DCP concentration and reaches a limiting 
value Te,may at about 100 mol/m3 TMTD and 35 
mol/m3 DCP, respectively. A t  this point, all entan- 
glements that are not freed by main-chain scission 
are trapped by the chemical cross-links and no more 
trapping takes place. (If no scission occurs, we have 
T,,,,, = 1.) The dotted lines represent an extrapo- 
lation of the limiting value T,,,,, to zero cross-link- 
ing densities. The intersections with the axis deter- 
mine the limiting contributions G,T,~,,, of the en- 
tanglements to the modulus GI according to eq. ( 18). 
Compared to the chemical cross-links, these con- 
tributions are relatively small. However, this does 
not mean that the limiting number of trapped en- 
tanglements is small compared to the cross-links. 
This is because a trapped entanglement lowers the 
degree of freedom of the network less than that of 
a chemical cross-link, i.e., the fluctuation range of 
trapped entanglements is larger and, thus, the 
structure factor is smaller than the corresponding 
one of chemical cross-links. This results in a smaller 
contribution of a trapped entanglement to the elastic 
modulus GI compared to a chemical cross-link. An 
experimental determination of the limiting values 
T,,,,, from the plots in Figures 6 and 7 is complicated 
by this fact. 

of GI. 
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Figure 4 Mooney-Rivlin plots of the reduced stress ( 0 )  at T = 100°C and the calculated 
Gaussian contribution (m)  for natural rubber networks, cured with 1, 2, 3, and 4 wt % 
thiuram ( TMTD ) . 

An easier way of evaluating the limiting values 
of the trapping factor is found by using the plot in 
Figure 8, where the constraint moduli G2 of both the 
TMTD and DCP networks are plotted against the 
elastic moduli G, due to the chemical cross-links, 
i.e., the moduli GI shown in Figures 6 and 7 minus 
the axis intersections [compare eq. ( 18) 1. Not all 
measured values are indicated in Figure 8, but only 
those of higher cross-linking densities where the 
trapping factor has reached its limiting value T,,,,,. 
The regression lines inserted correspond to the pre- 
dictions of eq. (23). From the slopes and the axis 
intersections of these lines, the limiting values of 
the trapping factor T,,,,, of both network types as 
well as the proportionality constant [ defined in (21) 
can be evaluated. The results are shown in Table I. 
For the structure factors, mean values of A = 0.81 

and 0.76 have been used (compare Fig. l o ) ,  whereas 
the gel fraction wg was taken to be equal to one. The 
plateau modulus of the natural rubber melt was 
found from dynamical measurements to be Gk = 0.5 
N mrn-’. 

The two limiting values of the trapping factor, 
which are independent of cross-linking density, al- 
low the calculation of the limiting fractions of the 
elastically effective network chains and the relative 
chain-scission probabilities by using eqs. (15) and 
(24). These results are independent of cross-linking 
density as well. They are shown in Table I together 
with the cross-linking efficiencies, i.e., the number 
of cross-links per TMTD and DCP molecules. These 
values are found from the slopes of the dotted lines 
in Figures 6 and 7 together with eqs. ( 16) and ( 17). 
The relatively small efficiency in the TMTD cross- 
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Figure 5 Mooney-Rivlin plots of the reduced stress ( 0 )  at T = 100°C and the calculated 
Gaussian contribution (m) for natural rubber networks, cured with 0.5, 1, 1.5, and 2 w t  % 
peroxid (DCP) . 

linking procedure indicates that only a small part 
of the TMTD radicals creates cross-links. Most is 
wasted in a subsidiary reaction. For the DCP cross- 
linking procedure, this is not the case; however, 21% 
of the DCP radicals led to main-chain scission. 

Figure 9 shows the infinite-strain moduli GI as a 
function of the calculated cross-linking densities for 
both cross-linking systems. The regression lines in- 
serted correspond to the limiting numbers of trapped 
entanglements. The slope of the lines is governed 
mainly by the root of the limiting value of the trap- 
ping factor as given by eq. ( 16). It is seen that the 
highly defective DCP networks have generally 
smaller elastic equilibrium moduli than that of the 
nearly perfect TMTD networks without defects if 
the number of cross-links is taken to be the same 
in both cases. This is because the chain ends do not 

contribute to the equilibrium modulus and, thus, the 
number of elastically effective strands, which de- 
termines the modulus GI according to eq. (12), is 
reduced in defective networks. An additional but 
smaller effect results from the differences in the 
structure factor A .  The values of A as calculated 
from eqs. (10) and (14) are plotted in Figure 10. 
They all lie in between the free fluctuation limit A 
= f and the affine, nonfluctuating limit A = 1. 

4. CONCLUSIONS 

The experimental results show that the amount of 
main-chain scission during the cross-linking pro- 
cedure, which determines the dangling free chain 
ends and trapped entanglements, can be evaluated 



CHARACTERIZATION OF NONIDEAL NETWORKS 1 147 

9) 

50 100 150 

I 
I 

- 

L 

l l l . l l l l l l l l l l l l l l l A  

- 

[ T M T D  ] / m o l m e 3  
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at  vanishing TMTD concentration (dotted line ) determines the limiting contribution of 
trapped entanglements. 
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constraint modulus G2 I N niiir-2 

Figure 8 Plot of the moduli G, due to chemical cross-links vs. the constraint moduli G P .  
The regression lines inserted determine the limiting values of the trapping factor Te,-= 
according to eq. (23).  (m) TMTD networks; ( 0 )  DCP networks. 

from the stress-strain behavior of the networks at 
large extensions. A necessary requirement is the 
consideration of the finite extensibility component 
of the reduced stress. Otherwise, the determination 
of the limiting value of the trapping factor according 
to the plot in Figure 8 results in an inconsistency, 
because the value for the TMTD networks becomes 
larger than one. The calculated values that are 
smaller, but quite close to one, confirm the proposed 
model. If TMTD is used in the cross-linking pro- 
cedure, nearly all (96% ) entanglements are trapped 
and only 1% dangling free chain ends result in the 
limit of high cross-linking densities. These are pos- 
sibly induced by thermal scission, because the ther- 
mal stability of natural rubber is not good. However, 
if the cross-linking procedure is performed with 

DCP, only 45% of the entanglements in the melt 
are trapped and 22% dangling free chain ends result 
in the limit of high cross-linking densities. Ob- 
viously, the corresponding relatively high chain- 
scission probability p / q  = 0.21 is induced by reac- 
tions of the cross-linking agent itself. The causal 
connections of these reactions cannot be clarified in 
the framework of this paper. To find them, addi- 
tional comparing examinations using polymers with 
different structures have to be done. 

Instead, we will focus on another question of in- 
terest, which concerns the tensile strength properties 
of the two types of networks in the soft rubber range. 
It is found that the TMTD networks have generally 
better tensil strength properties than do the DCP 
networks. An obvious conclusion is the connection 

Table I Characteristic Network Parameters That Are Independent of Cross-linking Densities 

Te.mm 5 ; p / 4  P / Q  [TMTD/DCP] 

NR/TMTD 0.96 1.86 0.99 0.01 0.31 
NR/DCP 0.45 1.71 0.78 0.21 1.33 

T.,-: limiting value of the trapping factor; i P / p p :  limiting fraction of elastically effective network chains; p /q :  relative chain-scission 
probability; pJ[TMTD/DCP]: cross-linking efficiency. 
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Figure 9 Plot of the elastic moduli GI vs. the calculated cross-linking density. The slope 
of the regression lines is governed by the different amounts of elastically effective strands. 
(m) TMTD networks; ( 0 )  DCP networks. 

of this fact with the different amounts of network 
defects: On the one hand, the dangling free chain 
ends can be imagined to reduce the tensile strength, 
because they do not contribute to the elastic modulus 

and just result in a “dilution” of the network. How- 
ever, this effect is small and we adopt the view that 
the tensile strength properties in the soft rubber 
range are governed mainly by the number of trapped 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

25 50 75 
crosslinking density p, I mol rn-= 

Figure 10 
TMTD networks; ( 0  ) DCP networks. 

Plot of the calculated structure factors A vs. the cross-linking density. (m) 
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entanglements directly. This follows from the as- 
sumption that the tensile strength depends on the 
width of distribution of the chain lengths, i.e., the 
degree of homogeneity in the network. 

Concerning this line of reasoning, good tensile 
strength properties require a uniform distribution 
of stress on all network chains or, equally well, a 
smoothening of stress peaks in the network. Trapped 
entanglements induce such a smoothening effect, 
because they are allowed to slide across each other 
up to an equilibrium position where all entangled 
chains are stressed uniformly. This effect governs 
the tensile strength properties of rubber networks 
as long as the number of trapped entanglements is 
larger or of the same order as the number of cross- 
links. Beyond this range, the tensile strength prop- 
erties are determined by the inhomogeneities of the 
strands due to the chemical cross-links alone, be- 
cause the probability that two cross-links are sep- 
arated by a homogenizing entanglement decreases 
rapidly. 

This means that the tensile strength of rubber 
networks passes through a maximum in the soft 
rubber range, which is indeed found in experimental 
results. The position as well as the value of the max- 
imum is determined by the number of trapped en- 
tanglements. 

From statistical arguments, it is clear that the 
position of the maximum should be defined inde- 
pendently of the kind of network by a critical ratio 
between the strand density v, and the density of 
trapped entanglements pe - T,,,, . The experimental 
results found on the TMTD and DCP networks 
suggest this ratio to have a value around one. A more 
exact determination of the critical ratio requires ad- 
ditional examinations of other networks. 

The author wishes to thank Dr. R. Badura for the generous 
support of this work and Dr. G. Heinrich for several useful 
hints and inspiring discussions. Thanks are due also to 
Mr. Y .  Yongwei for the programming of the numerical 
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